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Measures on the Splitting Subspaces
of an Inner Product Space

Emmanuel Chetcuti1 and Anatolij Dvure čenskij1

Let S be an inner product space and letE(S) (resp.F(S)) be the orthocomplemented
poset of all splitting (resp. orthogonally closed) subspaces ofS. In this article we study the
possible states/charges thatE(S) can admit. We first prove that whenS is an incomplete
inner product space such that dim̄S/S < ∞, thenE(S) admits at least one state with
a finite range. This is very much in contrast to states onF(S). We then go on showing
that two-valued states can exist onE(S) not only in the case whenE(S) consists of
the complete/cocomplete subspaces ofS. Finally we show that the well known result
which states that every regular state onL(H ) is necessarilyσ -additive cannot be directly
generalized for charges and we conclude by giving a sufficient condition for a regular
charge onL(H ) to beσ -additive.

KEY WORDS: Hilbert space; inner product space; splitting subspace; orthogonally
closed subspace; state; charge.

1. INTRODUCTION

Let Sbe an inner product space (real, complex, or quaternion). Unless oth-
erwise stated, we shall not assume thatS is complete. For any subspaceM ⊂ S
denote byM⊥ the subspace ofSconsisting of all the vectors that are orthogonal to
M, i.e.M⊥ = {x ∈ S : 〈x, y〉 = 0 for all y ∈ M}. If M andNare any two subspaces
of S such thatM ⊂ N, then we setM⊥N = M⊥ ∩ N. For any subspaceM ⊂ S
denote byM̄ the completion ofM, and if M ⊂ N ⊂ S, then, let us agree to denote
by M̄ N the closure ofM in N, i.e. M̄ N = M̄ ∩ N. When it is known (or assumed)
thatSis complete, i.e. thatSis a Hilbert space, we are usually writingH instead of
S. In addition, for any nonzero vectorx ⊂ S, let [x] denote the one-dimensional
subspace ofSspanned byx.

We can define a number of families of closed subspaces ofS. The most impor-
tant examples with respect to the mathematical foundation of Quantum Mechanics
are:

E(S) = {M ⊂ S : M ⊕ M⊥ = S}, and F(S) = {M ⊂ S : M⊥⊥ = M},
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the system of splitting subspaces and the system of orthogonally closed subspaces
of S, respectively.

Observe thatE(S) ⊂ F(S), and whenS is complete we haveE(S) = F(S)
(= L(S)). Surprisingly enough, Amemiya and Araki (1996) proved that the con-
verse is also true; i.e. if every orthogonally closed subspace ofSis splitting, thenSis
complete. Indeed, it was shown that ifF(S) is orthomodular,2 thenE(S) = F(S).
The importance of this result stems from the fact that in general it is very unusual
that an algebraic condition implies topological completeness.

Of great physical importance are measures defined onE(S) and F(S). A
charge mon E(S) is a mappingm : E(S)→ R such thatm(A∨ B) = m(A)+
m(B) wheneverA ⊂ B⊥. Charges onF(S) are defined in a similar way. A state is
a normalized positive charge. A chargemonE(S) (or F(S)) is said to beσ -additive
if for every countable collection{Mi : i ∈ N} of mutually orthogonal elements in
E(S) (resp.F(S)), satisfying that∨i∈N Mi exists inE(S),3 we have

m

(∨
i∈N

Mi

)
=
∑
i∈N

m(Mi ). (1.1)

(A charge is completely additive if Eq. (1.1) holds for every collection of mutually
orthogonal subspaces.)

In Dvurečenskij and Pt´ak (2002), the possible range that a state onF(S) can
have was investigated. It was shown that the range of a state onF(S) is always the
unit interval [0, 1]. This result was later extended in Chetcuti and Dvureˇcenskij
(2003) for bounded charges and it was also shown that the range of unbounded,
sign-preserving charges4 satisfying the Jauch-Piron property is always the whole
real lineR.

2. RANGE OF STATES ON E(S)

Every states on F(S) must satisfy Range(s) = [0, 1]. The same cannot be
said for states onE(S). As the following theorem states, the different algebraic
structure ofE(S) (see, for example Dvureˇcenskij, 1992) allowsE(S) to admit
states taking only finitely many different values.

Theorem 2.1. Let S be an inner product space such that0 < dim S̄/S= n < ∞.
Then E(S) admits a state taking at most n+ 1 values and vanishing on each
complete subspace of S.

2 F(S) is said to be orthomodular if for everyM, N ∈ F(S), M ⊂ N, we haveN = M ∨ (M⊥ ∧ N).
3 Observe thatF(S) is a complete lattice and therefore∨i∈NMi always exists inF(S).
4 A chargemon F(S) is said to satisfy thesign-preserving propertyif for any countable collection{Ni :
i ∈ N} of orthogonal finite-dimensional subspaces inF(S) satisfyingm(Ni ) > 0, (resp.m(Ni ) < 0)
for all i ∈ N, it follows thatm(∨i∈NNi ) ≥ 0, (resp.m(∨i∈NNi ) ≤ 0).
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Proof: Consider the mapping

s : E(S)→
{

0,
1

n
,

2

n
, . . . , 1

}
(2.1)

M 7→ dim M̄/M

n
. (2.2)

(Observe that dimM̄/M ≤ n for all M ∈ E(S)). Let M, N ∈ E(S) such that
M ⊥ N. We show that dimM̄/M + dim N̄/N = dim(M ⊕ N)/(M ⊕ N). Let
m1 = dim M̄/M and m2 = dim N̄/N and let {x1, x2, . . . , xm1} ⊂ M̄/M , and
{y1, y2, . . . ym2} ⊂ N̄/N such that the systems{xi + M : 1≤ i ≤ m1} and{yi +
N : 1≤ i ≤ m2} form bases inM̄/M and N̄/N respectively. We show that
R = {xi + (M ⊕ N) : 1≤ i ≤ m1} ∪ {yi + (M ⊕ N) : 1≤ i ≤ m2} forms a ba-
sis inM ⊕ N)/(M ⊕ N) = (M̄ ⊕ N̄)/(M ⊕ N). If w ∈ M̄ ⊕ N̄, thenw = x + y
for somex ∈ M̄ andy ∈ N̄. This implies that for some scalarsα1, α2, . . . , αm1, β1,
β2, . . . , βm2 andu ∈ M, v ∈ N, we have

x =
∑
i≤m1

αi xi + u,

y =
∑
i≤m2

βi yi + v,

and hence,x + y =∑i≤m1
αi xi +

∑
i≤m2

βi yi + u+ v. This means thatR is
spanning in (̄M ⊕ N̄)/(M ⊕ N). In addition, it is not difficult to show thatR is
a linearly independent subset of (M̄ ⊕ N̄)/(M ⊕ N). Hence dim(M ⊕ N)/(M ⊕
N) = m1+m2. ¤

In the following example, we exhibit an incomplete inner product spaceS
such that dim̄S/S= n < ∞ andE(S) admits a states satisfying

Range(s) =
{

0,
1

n
,

2

n
, . . . , 1

}
.

(As it will be shown in Remark 2.9, we can have dim̄S/S= n (n ≥ 2) and for
eachM ∈ E(S), dim M̄/M ∈ {0, n}.)

Example 2.2. For 1≤ i ≤ n, let Si be an incomplete dense hyperplane of a sep-
arable Hilbert spaceHi and letSbe the direct sum ofS1, S2, . . . , Sn, i.e.

S= S1⊕ S2⊕ · · · ⊕ Sn.

It is clear that dimS̄/S= n, and if we lets : E(S)→ {0, 1
n , 2

n , . . . , 1}, defined

by s(M) = dim M̄/M
n , thens is a state onE(S). What remains to show is that s is
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onto. Let 1≤ k ≤ n and letM = S1⊕ S2⊕ · · · ⊕ Sk. Of course,M ∈ E(S), and
moreover, dimM̄/M = k. Hences(M) = k

n .

We now show that if dim̄S/S= 2, and if there exists anM ∈ E(S) such that
dim M̄/M = 1, then we can define plenty of states vanishing on each complete
subspace ofS. We shall need to introduce the following notion and then prove
Proposition 2.3.

We define a mappingα : E(S)→ V(S̄/S), whereV(S̄/S) is the system of all
subspaces of̄S/S, by

α(M) := {x̂ : x ∈ M̄}, M ∈ E(S),

where x̂ denotes the class in̄S/S determined by a vectorx. Observe that
dimα(M) = dim M̄/M .

Proposition 2.3. The mappingα satisfies the following properties.

(i) If M, N ∈ E(S), M ⊂ N, then{0} = α({0}) ⊂ α(M) ⊂ α(N) ⊂ α(S) =
S̄/S.

(ii) If M, N εE(S), M⊥ N, thenα(M) ∩ α(N) = {0̂}.
(iii) If M, N ⊂ E(S), M⊥ N, thenα(M)+ α(N) = α(M + N).
(iv) α(M)+ α(M⊥) = S̄/S.

Proof: α(M) is a linear subspace of̄S/S.

(i) It is evident.
(ii) Let x̂ ∈ α(M) ∩ α(N). There arex1 ∈ M̄ and x2 ∈ N̄ such thatx̂ =

x̂1 = x̂2. Hencex1− x2 = y for somey ∈ S. Then y = y1+ y2+ y3,
where y1 ∈ M and y2 ∈ N, and y3 ∈ (M + N)⊥. Consequently,x1−
y1 = x2+ y2+ y3 ∈ M⊥ andx1− y1 ∈ M̄ which yieldsx1 = y1 ∈ M ,
i.e. x̂ = 0̂.

(iii) It is clear thatα(M)+ α(N) ⊂ α(M + N). Let x̂ ∈ α(M + N). Then
x ∈ M + N = M + N and x = x1+ x2, wherex1 ∈ M̄ and x2 ∈ N.
Hence,x̂ = x̂1+ x̂2, so thatx̂ ∈ α(M)+ α(N).

(iv) It follows from (iii). ¤

Example 2.4. Suppose that dim̄S/S= 2 and that there exists a subspaceM ∈
E(S) with dim M̄/M = 1. We denote byE the system of couples (α(M), α(M⊥))
such thatM ∈ E(S), dim M̄/M = 1, and if (α(M), α(M⊥)) ∈ E then (α(M⊥),
(α(M)) /∈ E . Let {(αM), α(M⊥))θ } θ∈2 be any labelling ofE . Letπ1 andπ2 be the
projections from (α(M), α(M⊥)) to the first and second coordinate, respectively.
We choose a family{pθ : θ ∈ 2} of real numbers from the unit interval [0, 1].
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We define a mappings : E(S)→ [0, 1] by

s(M) =


0 if dim M̄/M = 0,

1 if dim M̄/M = 2,

pθ if dim M̄/M = 1,π1((α(M), α(M⊥))θ = α(M),

1− pθ if dim M̄/M = 1,π2((α(M⊥), α(M))θ = α(M),

where M ∈ E(S). Thens is a state onE(S) which vanishes on each complete
subspace ofS. In particular, if pθ = 1/2 for anyθ ∈ 2, we have the state given
by Eq. (2.1).

In the following, we show that whenSis an inner product space with a count-
able linear dimension, then every states on E(S) satisfies Range(s) = [0, 1]. The
following lemma is a direct consequence of Gleason’s Theorem (Dvureˇcenskij,
1992; Gleason, 1957). For the proof of the lemma, the reader is referred to
(Dvurečenskij and Pt´ak, 2002) Proposition 2.4.

Lemma 2.5. Let Hn be an n-dimensional Hilbert space, n≥ 3, and let s be a
state on L(Hn). Then either we have s([x]) = 1

n for all x ∈ Hn (x 6= 0), or

[minx 6=o s([x]), maxx 6=0 s([x])] ⊂ Range (s).

Theorem 2.6. Let S be an inner product space with linear dimension equal to
ℵ0. Every state s on E(S) satisfiesRange(s) = [0, 1].

Proof: Let {ei : i ∈ N} be an orthonormal linear basis ofS and letM = span
{e2i : i = 1, 2, 3,. . .}. Then M⊥ = span{e2i−1 : i = 1, 2, 3,. . .}. We either have
s(M) ≥ 1

2 or s(M⊥) ≥ 1
2; it is harmless to assume the first. For anyn ≥ 3, we

can express the set of all odd positive integers in the form of a disjoint countable
union of (n− 1)-element setsI j , j ∈ N. Put Hj = span{ek : k ∈ I j } ⊕ [e2 j ] and
let Kn be ann-dimensional Hilbert space. Fix anyu ∈ S(Kn), and for eachj ∈ N,
let U j : Kn→ Hj be a unitary operator such thatUj (u) = e2 j . Define the map
φ : L(Kn)→ E(S), M 7→ span{⋃ j∈NU j M}. It is not difficult to verify thatφ
is well-defined (i.e.φ(M) ∈ E(S) for every M ∈ L(Kn)) and that if M ⊥ N in
L(Kn), thenφ(M)⊥φ(N), andφ(M ⊕ N) = φ(M)⊕ φ(N). Moreover,φ([u]) =
M . We can now define a statẽs on L(Kn) by s̃(M) = s(φ(M)). Observe that
s̃([u]) = s(M) ≥ 1

2. Certainly, there existsv ∈ S(Kn) such that̃s([v]) ≤ 1
n . Lemma

2.5 implies that [1n , 1
2] ⊂ Range(s). We can repeat this for everyn ≥ 3 and thus

obtain that [0,1
2] ⊂ Range(s). By considering complements, we get [0, 1]⊂

Range(s). ¤

In Chetcuti (2002), there is an attempt to characterize inner product spacesS
for which E(S) admits a two-valued state. It was not known whether the
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existence of a two-valued state onE(S) implies automatically thatS is an incom-
plete hyperplane of̄S. Here we give a negative answer to this question. Indeed,
we show that for anyη ∈ {1, 2, 3. . .} ∪ {ℵ0, 2ℵ0}, there exists an inner product
spaceSsuch that dim̄S/S= η andE(S) admits a two-valued state. First we prove
the following lemma which follows the same lines of Lemma 2.2.3 in Pt´ak and
Weber (2001).

Lemma 2.7. Let S1 ⊂ S2 be two inner product spaces such that S1 is dense in
S2 anddim S2/S1 = 1. Then for every M∈ E(S1), at least, either M or M⊥S1 is
closed in S2.

Proof: Suppose thatM ∈ E(S1) such that neitherM nor M⊥S1 is closed inS2.

Let x ∈ M̄ S2\M andy ∈ M⊥S1
S2\M ⊥S1 . Since dimS2/S1 = 1, there exist scalars

α, β such thatαx + βy = s for somes ∈ S1. But s= s1+ s2, wheres1 ∈ M and
s2 ∈ M ⊥S1 . Then we have thats1− αx = βy− s2, which is a contradiction. ¤

Theorem 2.8. For everyη ∈ {1, 2, 3,. . .} ∪ {ℵ0, 2ℵ0}, there exists an inner prod-
uct space S such that dim̄S/S= η and E(S) admits a two-valued state.

Proof: Let H be an infinite-dimensional, separable Hilbert space and defineζ

as follows:ζ = η − 1 if η ∈ {1, 2, 3,. . .}, andζ = η if η ∈ {ℵ0, 2ℵ0}. Let S′ be a
dense subspace ofH having linear dimension equal to 2ℵ0 such that dimH/S′ =
ζ . Let U denote the collection of all the closed subspaces ofS′ having a linear
dimension equal to 2ℵ0. It is not difficult to verify that |U| = 2ℵ0. Hence, we
can express asU = {Uα : 0≤ α < ω}, whereω is the first ordinal number with
cardinality 2ℵ0. Using transfinite induction, we can construct a linearly independent
set of unit vectorsV = {vα : 0≤ α < ω} ⊂ S′, such thatvα ∈ Uα for eachα. We
can extend this set to a linear basis (consisting of unit vectors)K of S′. Expressing
the set{p ∈ R : p > 0} as{pα : 0≤ α < ω}, we can define a linear functionalf
on S′ by setting f (vα) = pα for eachvα ∈ V and f (v) = 0 for all v− ∈ K\V . Let
S= Ker( f ). ThenS is dense inS′ and dimS′/S= 1.

By the construction ofS, and by Lemma 2.7, it follows that for allM ∈
E(S), eitherM or M ⊥ S has a linear dimension less than 2ℵ0. The mappings :
E(S)→ {0, 1} defined bys(M) = 0 if the linear dimension ofM is less than 2ℵ0,
ands(M) = 1 if linear dimension ofM is 2ℵ0 defines a two-valued state onE(S).
Observe that dim̄S/S= dim H/S= η. The proof is complete. ¤

Remark 2.9 In the case whenη < 2ℵ0, we remark that from the construction ofS,
it follows that E(S) merely consists of the finite/cofinite dimensional subspaces.
This means that the state defined onE(S) by (2.1) gives only a two-valued state.
Indeed, in such case, this is the only state onE(S) having a discrete range.
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Let C(S) be the collection of all complete and all cocomplete subspaces of
S. (A subspaceB ⊂ S is said to be cocomplete if there exists a complete subspace
A ⊂ Ssuch thatB = A⊥ .) It is very easy to check that we always have the inclusion
C(S) ⊂ E(S). By Lemma 2.7 it follows that ifSis an incomplete hyperplane of̄S,
thenC(S) = E(S). Moreover, whenC(S) = E(S), thenE(S) admits a two-valued
state. As the following example illustrates, the converse of this last statement is
not true.

Example 2.10 Let H1 andH2 be two separable Hilbert spaces, and let{ei : i ∈ N}
be an ONB ofH1. PutS0 = span{ei : i ∈ N} and defineS′ to be the direct sum of
S0 and H2, i.e. S′ = S0⊕ H2. Now we apply the technique used in the proof of
Theorem 2.8 to derive a dense hyperplaneSof S′ such thatS0 ⊂ SandE(S) admits
a two-valued state. If we letω to be the first ordinal number with cardinality 2ℵ0,
and{Uα ⊂ S′ : 0≤ α < ω} to be the collection of closed subspaces ofS′ having a
linear dimension equal to 2ℵ0, then we can use transfinite induction and construct
a linearly independent set of unit vectorsV = {vα ∈ S′ : 0≤ α < ω} such that:

(i) vα ∈ Uα for eachα,
(ii) {ei : i ∈ N} ∪ V is a linearly independent set inS′.

Now we proceed exactly as in the proof of Theorem 2.8, and we extend
{ei : i ∈ N} ∪ V to a linear basisK of S′. After expressing the set of positive reals
as{pα : 0≤ α < ω}, we can define an unbounded linear functionalf onS′ in such
a way that it is vanishing on all the vectors inK\V , and such thatf (vα) = pα. It
is clear that if we letS= Ker( f ), thenE(S) admits a two-valued state. Moreover,
observe thatS0 ∈ E(S), andS0 is neither complete nor cocomplete.

3. REGULAR STATES ON E(S)

In this section we study regular states on the system of splitting subspaces of
an infinite-dimensional inner product spaceS. A chargem on E(S) is said to be
regularif for everyε > 0 andA ∈ E(S), there exists a finite-dimensional subspace
M ⊂ A such that|m(A)−m(M)| < ε. For any chargem on E(S), we set

Rangef (m) := {m(A) : A ∈ E(S), dim A < ∞},
and for any integern = 0, 1,. . . , we set

Rangen(m) := {m(A) : A ∈ E(S), dim A = n}.
First we consider the case whenSis complete, i.e. we consider regular states

on L(H ), whereH denotes an infinite-dimensional Hilbert space. The range of
every state onL(H ) is [0, 1] (Dvurečenskij and Pt´ak, 2002). Every regular states
on L(H ) is of the forms(M) = tr(T PM ), whereT is a Hermitian trace operator on
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H with unit trace (Dvureˇcenskij, 1992). This implies thats is completely additive.
WhenH is separable, everyσ -additive state onL(H ) is regular (see also Theorem
4.1), and therefore, the regular states onL(H ) are precisely the ones that are
σ -additive.

Theorem 3.1. Let H be an infinite-dimensional Hilbert space and let T be a
positive Hermitian trace operator on H with unit trace. The state sT on L(H) defined
by sT (M) = tr(T PM ), M ∈ L(H ), satisfies[0, 1)⊂ Rangef (sT ). Moreover,1 ∈
Rangef (sT ) if, and only if, T has a finite system of proper vectors.

Proof: Hermitian trace operators can be expressed in the form

T =
∑
ı∈i
λi xi ⊗ x̄i , (3.1)

where{λi : i ∈ I } are the eigenvalues ofT (possibly repeated) corresponding to the
proper vectors{xi : i ∈ I }. Moreover, sinceT is of unit trace, we have

∑
i∈I λi =

1. If I is finite, we can find a finite ONS{ui : i ∈ I } such thatxi ⊥ u j for all
i , j ∈ I . For anyφ ∈ [0, π2 ] andi ∈ I , we can then defineyi = cosφxi + sinφui .
Let Y = ⊕i∈I [yi ] and considersT (Y),

sT (Y) =
∑
i∈I

sT ([yi ]) =
∑
i , j∈I

λ j |〈yi , xj 〉|2

=
∑
i∈I

λi |〈yi , xi 〉|2 =
∑
i∈I

λi cos2 φ = cos2 φ.

Hence, forn = |I |, Rangen(sT ) = Rangef (sT ) = [0, 1].
Now suppose thatI is infinite. Given anyε > 0, there exists a finite subset

I0 ⊂ I such that
∑

i∈I0
λi > 1− ε. Let {ui : i ∈ I0} be an ONS inH such that

xi ⊥ u j for all i , j ∈ I0.
Define, as in the first part of the present proof,yi = cosφxi + sinφui , i ∈ I0,

and letYI0 = ⊕i∈I0[yi ]. Then

sT (YI0) =
∑
i∈I0

([yi ]) =
∑
i∈I0

∑
j∈I

λ j |〈yi , xj 〉|2

≥
∑

i , j∈I0

λ j |〈yi , xj 〉|2 =
∑
i∈I0

λi cos2 φ = cos2 φ
∑
i∈I0

λi .

This implies that Rangef (sT ) ⊃ [0, 1). Observe thatsT (M) = 1 if, and only if,
{ui : i ∈ I } ⊂ M , which yields that 1/∈ Rangef (sT ) whenI is infinite. ¤

Corollary 3.2. Let H be an infinite-dimensional Hilbert space and let s be a
regular state on L(H). For any A∈ L(H ), dim A = ∞, we have

[0, s(A)) ⊂ {s(M) : M ⊂ A, dim A < ∞} ⊂ [0, s(A)].
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We now recall to the fact that every states on E(S) can be uniquely expressed
in the form

s= αsR+ βsV ,

whereα, β ∈ [0, 1] such thatα + β = 1, sR is a regular state andsV is a state on
E(S) vanishing on all the finite-dimensional subspaces ofS. This was originally
proved by Aarnes (1970) for the case whenSis a Hilbert space, and then generalized
for all inner product spaces by the second author of this article (Dvureˇcenskij,
1991).

Corollary 3.3. Let s= αsR+ βsV be a state on L(H),dim H = ∞. Then
Range (s)= [0,1], and

[0, α) ⊂ Rangef (s) ⊂ [0, α]. (3.2)

Proof: By the result proved in Dvureˇcenskij and Pt´ak (2002), we have Range
(s) = [0, 1], and Corollary 3.2 implies Eq. (3.2). ¤

Now we consider states onE(S) whenSis an incomplete inner product space.
If T is a positive Hermitian trace operator on̄S with unit trace, then the mapping
sT on E(S) defined by

sT (M) = tr(T PM̄ ), M ∈ E(S), (3.3)

is a regular state onE(S). The converse is also true. (The reader may need to refer
to Dvurečenskij (1992), Theorem 4.3.5.) Indeed, every regular state onE(S) is
of the form defined by Eq. (3.3) for some unique positive trace operatorT on S̄
with unit trace. Observe that, in contrast toL(H ), regular states onE(S) are not
σ -additive. In fact, for a separable inner product spaceS, E(S) admits aσ -additive
state only ifS is complete. In Theorems 2.1 and 2.8, it was seen that the range of
states onE(S) can be finite. We shall show that this cannot be when our states is
regular. Before showing this, we prove the following lemmas.

Lemma 3.4. Let{ f1, f2, . . . , fn} be a finite ONS in the completion̄S of an inner
product space S. For everyδ > 0 there exists an ONS{h1, h2, . . . , hn} ⊂ S such
that || fi − hi || < δ for all i ≤ n.

Proof: Let M1 = span{ f1, f2, . . . , fn−1}⊥s̄. Since fn ∈ M1 and becauseM1 ∩ S
is dense inM1, there existshn ∈ M1 ∩ S such that|| fn − hn|| < δ. Put M2 =
span{ f1, f2, . . . , fn−2, hn, fn}⊥s̄. Repeating the same argument, we can findhn−1

∈ M2 ∩ S such that|| fn−1− hn−1|| < δ. Continuing like this, we construct the
ONS{h1, h2, . . . , hn} ⊂ Ssatisfying the required condition. ¤
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Lemma 3.5. Let s be a state on E(S), dimS= ∞. There exists a unique Hermi-
tian operator T0 on S̄ such that s([x]) = 〈T0x, x〉 for all x ∈ S(S). Moreover,
for every ε > 0, there existsδ > 0 such that for every x, y ∈ S(S) satisfying
||x − y|| < δ, we have|s([x])| − s([y])| < ε.

Proof: By restrictings on L(N), whereN is a three-dimensional subspace of
S, we get a finitely additive (positive) measures|L(N) on L(N). By Gleason’s
theorem, there exists a bounded symmetric bilinear formtN on N × N such that
s([x]) = tN(x, x) holds for allx ∈ S(N). Since every symmetric bilinear form is
uniquely determined by its quadratic form, we can define a bilinear formt onS× S
as follows: for anyx, y ∈ S, let N be any three-dimensional subspace containingx
andy, then putt(x, y) = tN(x, y). It is clear thatt(x, x) = s([x]) for all x ∈ S(S).
Sinces is bounded,t is also bounded and thereforet can be uniquely extended to
a bounded symmetric bilinear form̄t on S̄× S̄. Consequently, there is a unique
Hermitian operatorT0 on S̄such thats([x]) = 〈T0x, x〉 for all x ∈ S(S).

Now let x, y ∈ S(S). Then we have

|s([x]) − s([y])| = |〈T0x, x〉 − 〈T0y, y〉|
= |〈T0x, x〉 − 〈T0x, y〉 + 〈T0x, y〉 − 〈T0y, y〉|
< |〈T0x, x − y〉| + |〈T0x − T0y, y〉|
≤ 2||T0|| · ||x − y||,

which implies thats is “continuous onS(S).” ¤

We remark that it can be also shown that the Hermitian operatorT0 obtained
in Lemma 3.5 is of trace class.

Theorem 3.6. Let S be an incomplete inner product space and let T be a positive
trace operator on̄S with unit trace. The state sT on E(S) defined as in Eq. (3.3),
satisfies[0, 1)⊂ Rangef (sT ). Moreover,1 ∈ Rangef (sT ) if, and only if, T has only
a finite system of proper vectors, and these are all in S.

Proof: The Hermitian trace operatorT can be expressed as

T =
∑
i∈I

λi xi ⊗ x̄i ,

where {λi : i ∈ I } are the eigenvalues (possibly repeated) ofT corresponding
to the proper vectors{xi : i ∈ I }. Moreover, sinceT is of unit trace, we have∑

i∈I λi = 1. This implies that for everyε > 0, there exists a finite subsetI0 ⊂
I such that

∑
i∈I0

λi > 1− ε. Take an ONS{wi : i ∈ I0} ⊂ span{xi : i ∈ I0}⊥s̄.
Then

∑
i∈I0
〈Twi , wi 〉 < ε. By Lemma 3.5 there existsδ > 0 such that for each
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xi , wi , i ∈ I0 andu, v ∈ S(S), we have

|ST ([u]) − λi | < ε

I0
whenever|u− xi | < δ,

|ST ([v]) − 〈T wi , wi 〉| < ε

I0
whenever|v − wi | < δ.

By Lemma 3.4, we can find an ONS{ui : i ∈ I0} ∪ {vi : i ∈ I0} ⊂ S such
that||ui − xi || < δ and||vi − wi || < δ, for eachi ⊂ I0. This implies that

a = sT
(⊕i∈I0 [ui ]

)
> 1− 2ε, and b = sT

(⊕i∈I0 [vi ]
)

< 2ε.

For eachi ∈ I0, let yi = cosφ ui + sinφ vi , whereφ ∈ [0, π2 ]. Set YI0 =
⊕i∈I0[yi ]. Then

sT (YI0) =
∑
i∈I0

sT ([yi ])

=
∑
i∈I0

∑
j∈I

λi |〈yj , xj 〉|2

=
∑
i∈I0

∑
j∈I

λ j |〈cosφui + sinφvi , xj 〉|2

=
∑
i∈I0

∑
j∈I

λ j {cos2 φ|〈ui , xj 〉|2+ sin2 φ|〈vi , xj 〉|2

+ sinφ cosφ{〈vi , xj 〉〈xj , ui 〉 + 〈ui , xj 〉〈xj , vi 〉}}
= a cos2 φ + b sin2 φ + γ sinφ cosφ,

whereγ ∈ R. By elementary real analysis theory, it follows that

[a, b] ⊂ Rangef (s).

This implies that [2ε, 1− 2ε] ⊂ Rangef (s). Sinceεwas arbitrary, we have [0, 1)⊂
Rangef (s). We conclude by noting thatsT (M) = 1 if, and only if,{xi : i ∈ I } ⊂ M̄ .
Thus, 1∈ Rangef (sT ) only when {xi : i ∈ I } is finite and is contained
in S. ¤

Corollary 3.7. Let S be an incomplete inner product space and let s be a regular
state on E(S). For any A∈ E(S), dim A = ∞, we have

[0, s(A)) ⊂ {s(M) : M ⊂ A, dim A < ∞} ⊂ [0, s(A)].

By considering the Aarnes decomposition of any stateson E(S), s= αsR+
βsV , it immediately follows (by Corollary 3.7), that [0,α) ⊂ Rangef (s). However,
observe that the range ofsneed not be convex as it is in the case whenSis complete.
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Only if the regular component ofs is “sufficiently large,” we can guarantee that
Range(s) = [0, 1]. This happens whenα > 1

2.
We have also examples of states onE(S) such that the regular component of

their decomposition is not zero (i.e.α 6= 0), and yet their range is not convex. For
example, letSbe an inner product space such thatE(S) consists of the finite/cofinite
subspaces ofS. (Refer to Remark 2.9.) LetsV be a state onE(S) vanishing on
all the finite-dimensional subspaces ofS (observe that in this case this state is
necessarily two-valued), and letsR be any regular state onE(S). Let 0< α <
1
2, and consider the states= αsR+ (1− α)sV . It is not difficult to verify that
(α, 1− α) ∩ Range(s) = φ.

4. REGULAR CHARGES ON L(H )

We recall that a cardinal numbera is said to benonmeasurableif for every
setA having cardinalitya, the power set ofA admits noσ -additive probability
measureµ satisfyingµ({x}) = 0 for all x ∈ A. (Refer to Ulam, 1930.) For each
n = 0, 1, 2,. . . , the cardinalℵn is nonmeasurable. Moreover, ifa andb are two
cardianals such thata ≤ b andb is nonmeasurable, thena is also nonmeasurable.
In addition, if we adopt the continuum hypothesis, then the cardinality ofR, 2ℵ0,
is equal toℵ1, and therefore is also nonmeasurable. It should be noted that most
practical applications involve nonmeasurable cardinals; very often countable car-
dinals. Moreover, there are set-theoretical models, relative to which, each cardinal
is nonmeasurable.

Theorem 4.1. Let H be a Hilbert space whose dimension is a nonmeasurable
cardinal. Everyσ -additive charge on L(H) is completely additive and regular.

Proof: Let mbe aσ -additive charge onL(H ) and let{Mi : i ∈ I } be any collec-
tion of a mutually orthogonal subspaces inL(H ). Define the mappingµ : 2I →
R, µ(J) = m(∨i∈J Mi ). The set functionµ defines a finite signed-measure on
2I , and therefore it admits a Jordan decomposition, i.e. it can be expressed as
the difference of two positive finite signed measuresµ+ andµ−. By the The-
orem of Ulam (1930), there exist two (at most) countable subsetsJ+ and J−
of I such thatµ+(I \J+) = µ−(I \J−) = 0. Put J0 = J+ ∪ J−. Thenµ(I \J0) =
µ+(I \J0)− µ−(I \J0) = 0. This implies that

m

(∨
i∈I

Mi

)
= µ(I ) = µ(J0)+ µ(I \J0)

=
∑
i∈J0

µ({i })+
∑

i∈I \J0

µ({i })

=
∑
i∈I

m(Mi ).
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In particular, letM = ∨i∈I [xi ], where {xi : i ∈ I } if an ONB of M. Then
m(M) =∑i∈I m([xi ]), and thereforem is regular. ¤

If H is a Hilbert space whose dimension is a nonmeasurable cardinal, then
the set of regular states onL(H ) coincides with the set ofσ -additive states.
The same cannot be said for charges. Dorofeev and Sherstnev (1990) proved
that every completely additive charge onL(H ), dim H = ∞, is bounded. If
we restrict ourselves to spaces with nonmeasurable dimension, we have: every
σ -additive charge onL(H ) is bounded. Our aim is to show that for an infinite-
dimensional Hilbert spaceH, there always exist a regular charge onL(H ) which is
unbounded.

First we define a Hamel discontinuous function onR as follows. (See also
Hamel, 1905.) LetB = {xs : s ∈ 6}be a Hamel basis inRover the field of rational
numbers. It is harmless to assume thatxs > 0 for eachs ∈ 6. Fix an element
xs0 ∈ B. Then every real numberx ∈ R can be uniquely expressed in the form

x = βs0xs0 +
∑
s∈σ

βsxs, (4.1)

whereσ is a finite subset of6\{s0} andβ ’s are rational numbers. We define a
Hamel discontinuous functionφ : R→ Q by φ(x) = βs0 wheneverx ∈ R is of
the form (4.1).

Let s be any regular state onL(H ). We claim to show thatφ o s is a regular
charge. Letε > 0 and A ∈ L(H ) be given. Ifφ(s(A)) = 0, we takeM = {0},
which yields |φ(s(A))− φ(s(M))| < ε. So let 06= s(A) = βs0xs0 +

∑
s∈σ βsxs

whereβs0 6= 0. There is an integern ≥ 1 such that 1/n < ε andxs0/n < s(A).
Then 0< (βs0 − 1/n)xs0 +

∑
s∈σ βsxs < s(A). By Corollary 3.2, there is a finite-

dimensional subspaceM of A such thats(M) = (βs0 − 1/n)xs0 +
∑

s∈σ βsxs.
Hence,|φ(s(A))− φ(s(M))| = 1/n < ε which proves thatφ ◦ s is a regular charge
on L(H ).

In Chetcuti and Dvureˇcenskji (2003), the authors have proved that the range
of a bounded charge onL(H ) is always convex inR. This implies that the charge
φ ◦ s is unbounded. In view of the Dorofeev–Sherstnev result, it follows thatφ ◦
s is notσ -additive.

Theorem 4.2. Let H be a Hilbert space whose dimension is an infinite nonmea-
surable cardinal. The set ofσ -additive charges on L(H) is a proper subset of the
set of regular charges on L(H).

Observe also that Rangef (φ ◦ s) is rationally convex.5 Indeed, letβ1 =
φ(s(A)) < φ(s(B)) = β2, whereA, B ∈ L(H ) and letβ ∈ Q such that5 β1 < β <

5 A subsetA of R is rationally convexif for any x1, x2 ∈ A, λ ∈ Q ∩ (0, 1), we haveλx1 + (1− λ)x2

∈ A.
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β2 be given. There is a rational numberλ, 0 < λ < 1, such thatβ = λ β1+ (1−
λ)β2. Thereforex = λ s(A)+ (1− λ) s (B) ∈ [0, 1). By Theorem 3.2, there is a
finite-dimensional subspaceM ∈ L(H ) such thats(M) = x. Consequently,β =
φ(s(M)) ∈ Rangef (φ ◦ s). Sinceφ ◦ s is unbounded, we have Rangef (φ ◦ s) =
Range(φ ◦ s) = Q.

We recall that a chargem on E(S) (or on F(S)) is P(S)-bounded(resp.
P1(S)-bounded) if Rangef (m) is bounded (resp. Range1(m) is bounded). If in the
previous construction we choose our regular state to be a vector statesu, for some
u ∈ S(H ), one can easily verify that Range1(φ ◦ su) is unbounded. Thus, not every
regular charge onL(H ) is P1(H )-bounded. This answers to the negative a question
asked in Chetcuti and Dvureˇcenskij (2004), whether every regular charge onF(S)
is P1(S)-bounded.

In Chetcuti and Dvureˇcenskij (2003) and Chetcuti and Dvureˇcenskij (2004),
the notion of sign-preserving charges was introduced. In Chetcuti and Dvureˇcenskij
(2004), it was proved that every regular sign-preserving charge onL(H ) is σ -
additive. From this, and from the above discussion, we see that the regularity of a
charge is not sufficient for it to satisfy the sign-preserving property.

We conclude by giving a sufficient condition for a regular charge onL(H) to
beσ -additive.

Theorem 4.3. Let H be an infinite-dimensional Hilbert space and let m be
a P1(H )-bounded, regular charge on L(H). Then m isσ -additive. Moreover,
Rangef (m) contains (α, β), where α = inf{m(A) : A ∈ L(H )} and β =
sup{m(A) : A ∈ L(H )}.

Proof: We can repeat the steps of the proof of Lemma 3.5 to obtain a Hermitian
operatorT onH satisfying thatm([x]) = 〈T x, x〉 for all x ∈ S(H ).

We show thatT is a trace class operator. First we recall thatTcan be expressed
as the difference of two positive operatorsT1 andT2, andH can be split into two
orthogonal subspacesH1 andH2 such thatT1H2 = T2H1 = 0. SinceT1 is positive,
to show that it is a trace operator, it is sufficient to verify that

∑
i∈I 〈T1xi , xi 〉 is

summable for one ONB{xi : i ∈ I } in H. Let {xi : i ∈ I0} and {yj : j ∈ J0} be
orthonormal bases ofH1 andH2 respectively. Then∑

i∈I0

〈T1xi , xi 〉 +
∑
j∈J0

〈T1yj , yj 〉 =
∑
i∈I0

〈T1xi , xi 〉 =
∑
i∈I0

m([xi ]). (4.2)

Sincem is regular, and becausem is positive on all the finite-dimensional
subspaces ofH1, it follows thatm is positive (and therefore monotone) onL(H1).
Hence, for any finite subsetI ′0 of I0, we have 0≤∑i∈I ′0

m([xi ]) ≤ m(H1). This
implies that 0≤∑i∈I0

m([xi ]) ≤ ∞, and thereforeT1 is a trace operator. The
same can be shown forT2, and therefore it follows thatT is a trace operator. So
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we can define the completely additive chargemT on L(H ) by settingmT (M) =
tr(TPM ), M ∈ L(H ). Our goal is to show thatm> = m. SincemandmT are regular
and monotone onL(H1) and L(H2), it follows that m(Hi ) = mT (Hi ), i = 1, 2.
Hence,

m(H ) = m(H1)+m(H2) = mT (H1)+mT (H2) = tr (TPH ).

Now let M ∈ L(H ). If we restrictmto L(M), we can derive a Hermitian trace
operatorTM onM such that

〈TM x, x〉 = m([x]) = 〈T x, x〉
for all x ∈ S(M). Since bilinear forms are uniquely determined by their corre-
sponding quadratic forms, it follows that〈TM x, y〉 = 〈T x, y〉 for all x,y ∈ M,
and therefore, tr(TM ) = tr(T PM ). (Observe thatTM is equal to the restriction
of PMTPM on M.) The subspaceM can be split into two orthogonal subspces
M1 and M2 such thatTM is positive onM1 and negative onM2. Thus we can
repeat the same arguments as in the preceding paragraph and we simply inter-
changeH with M andT with TM , and we getm(M) = tr(TM ), which implies that
m(M) = tr(TPM ).

Now we show that (α, β) ⊂ Rangef (m). For everyε > 0, there exists a
finite-dimensional subspaceA ⊂ H such thatm(A) > β − ε. In addition, we can
find a finite-dimensional subspaceA′ ⊂ A⊥ such that dimA′ = dim A and−ε <
m(A′) < ε. If we let {ai : i ≤ n} and{a′i : i ≤ n} be orthonormal bases inA andA′

respectively, we can defineyi = cosφai + sinφa′i , φ ∈ [0, π2 ], andY = ⊕i≤n[yi ].
By a similar argument to that used in the proof of Theorem 3.6, one can show that
[m(A′), m(A)] ⊂ Rangef (m). This implies that [0,β] ⊂ Rangef (m). But we can
also find a finite-dimensional subspaceB ⊂ H such thatm(B) < α + ε. By re-
peating the same arguments of above, we deduce that (α, 0] ⊂ Rangef (m). Thus
(α, ε) ⊂ Rangef (m). ¤
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Chetcuti E. and Dvurecenskij A. (2004). Boundedness of sign-preserving charges, regularity, and the
completeness of inner product spaces.Journal of the Australian Mathematical Society, to appear.

Dorofeev S. V. and Sherstnev A. N. (1990). Frame-type functions and their applications.Izvestiya
Vuzov Matematika4, 23–29 (in Russian).
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